
やかしめかしのかいのうかしかかしかかしのかいのうかしかか

Event anisotropy of identified π^0 , γ and e compared to charged π , K, p, and d in $\sqrt{s_{NN}}$ = 200 GeV Au+Au at PHENIX

Masashi Kaneta

for the PHENIX collaboration

Brazil University of São Paulo, São Paulo China Academia Sinica, Taipei, Taiwan

China Institute of Atomic Energy, Beijing

Peking University, Beijing

France LPC, University de Clermont-Ferrand, Clermont-Ferrand

Dapnia, CEA Saclay, Gif-sur-Yvette

IPN-Orsay, Universite Paris Sud, CNRS-IN2P3, Orsay LLR, Ecòle Polytechnique, CNRS-IN2P3, Palaiseau SUBATECH, Ecòle des Mines at Nantes, Nantes

Germany University of Münster, Münster

Hungary Central Research Institute for Physics (KFKI), Budapest

Debrecen University, Debrecen

Eötvös Loránd University (ELTE), Budapest

India Banaras Hindu University, Banaras

Bhabha Atomic Research Centre, Bombay

Israel Weizmann Institute, Rehovot

Japan Center for Nuclear Study, University of Tokyo, Tokyo

Hiroshima University, Higashi-Hiroshima

KEK, Institute for High Energy Physics, Tsukuba

Kyoto University, Kyoto

Nagasaki Institute of Applied Science, Nagasaki

RIKEN, Institute for Physical and Chemical Research, Wako

RIKEN-BNL Research Center, Upton, NY

Rikkyo University, Tokyo

Tokyo Institute of Technology, Tokyo University of Tsukuba, Tsukuba Waseda University, Tokyo

S. Korea Cyclotron Application Laboratory, KAERI, Seoul

Kangnung National University, Kangnung

Korea University, Seoul

Myong Ji University, Yongin City

System Electronics Laboratory, Seoul Nat. University, Seoul

Yonsei University, Seoul

Russia Institute of High Energy Physics, Protovino

Joint Institute for Nuclear Research, Dubna

Kurchatov Institute, Moscow

PNPI, St. Petersburg Nuclear Physics Institute, St. Petersburg

St. Petersburg State Technical University, St. Petersburg

Sweden Lund University, Lund

*as of January 2004

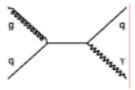
12 Countries; 58 Institutions; 480 Participants*

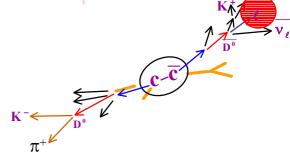
USA Abilene Christian University, Abilene, TX **Brookhaven National Laboratory, Upton, NY** University of California - Riverside, Riverside, CA University of Colorado, Boulder, CO Columbia University, Nevis Laboratories, Irvington, NY Florida State University, Tallahassee, FL Florida Technical University, Melbourne, FL Georgia State University, Atlanta, GA University of Illinois Urbana Champaign, Urbana-Champaign, IL Iowa State University and Ames Laboratory, Ames, IA Los Alamos National Laboratory, Los Alamos, NM Lawrence Livermore National Laboratory, Livermore, Ca University of New Mexico, Albuquerque, NM New Mexico State University, Las Cruces, NM Dept. of Chemistry, Stony Brook Univ., Stony Brook, NY Dept. Phys. and Astronomy, Stony Brook Univ., Stony Brook, NY Oak Ridge National Laboratory, Oak Ridge, TN University of Tennessee, Knoxville, TN

Vanderbilt University, Nashville, TN

Announcement

- The flow and event anisotropy from the PHENIX collaborators in the poster session
 - Shingo Sakai*
 - Azimuthal anisotropy of electrons/positrons in 200 GeV Au+Au collisions at RHIC-PHENIX
 - Andrey Kazantsev*
 - Elliptic flow of inclusive photons in Au+Au collisions at $\sqrt{s_{NN}}$ =200 GeV from the PHENIX experiment at RHIC
 - Hiroshi Masui*
 - Measurement of directed flow in $\sqrt{s_{NN}}$ =200 GeV Au+Au, d+Au, p+p collisions at RHIC-PHENIX
 - Akio Kiyomichi
 - Radial flow study from identified hadron spectra in Au+Au collisions at $\sqrt{s_{NN}}$ =200 GeV (at PHENIX)
 - Michael Issah*
 - Azimuthal anisotropy measurements in PHENIX via cummulants of Multiparticle azimuthal correlations
 - Debsankar Mukhopadhyay
 - Elliptic flow of ϕ mesons in Au+Au collisions at $\sqrt{s_{NN}}$ =200 GeV (at PHENIX)
 - ShinIchi Esumi
 - Analysis of event anisotropy and azimuthal pair correlation




Motivations

<u>෦ඁ</u>෬෧ඁ෯෮ඁ෫ඁ෯෮෫෯෮෯෯෮෯෯෮෯෯෮෯෯෮෯෯෮෯෯

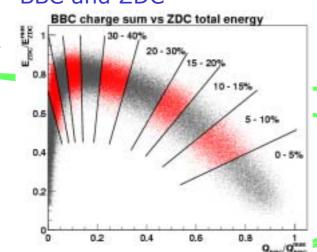
Event anisotropy

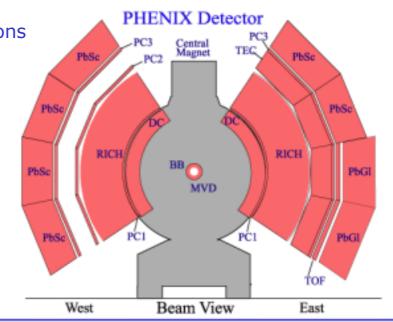
- Sensitive to the initial state
 - Collectivity of hadron/parton → thermalization / recombination
 - Energy loss by Jet quenching → dense matter
- \bullet π^0
 - Large p_T coverage as an identified hadron
 - Large contribution of the decay to the following inclusive measurements
- Photon
 - Radiation / Compton from hot gas
 - Photon flow?
- Electron/positron
 - Open charm and bottom
 - Flow and energy loss of heavy flavors?

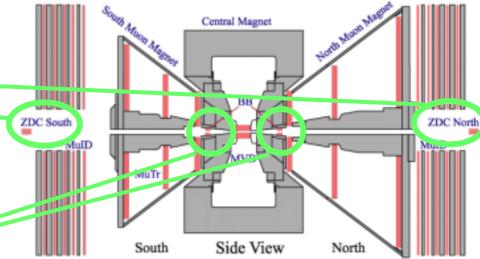
The PHENIX experiment at RHIC

• Photons/ π^0

Tracking: vertex be BBC to EMC hit positions


- PID: EMCal


Electrons

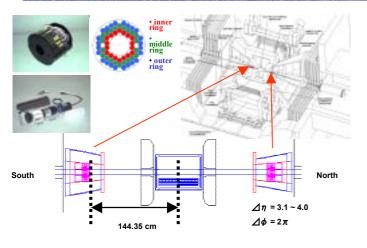

- Tracking
 - DC, PC hits, vertex by BBC
- PID
 - RICH $(p_r < 4.9 \text{ GeV/}c)$
 - Energy/momentum cut by EMCal

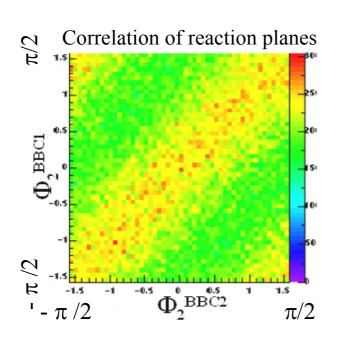
Event centrality

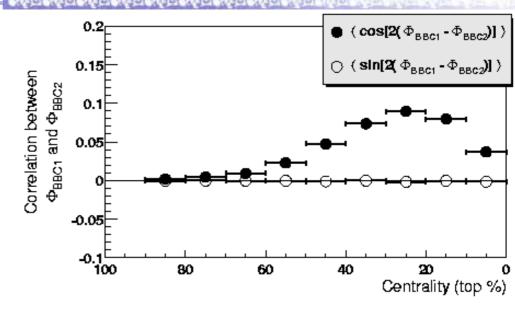
BBC and ZDC

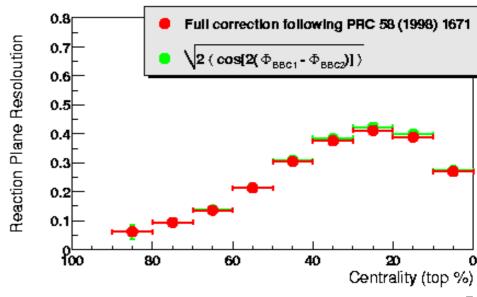
Method of v_2 Measurement

$$E\frac{dN^{3}}{d^{3}p} = \frac{1}{2\pi} \frac{d^{2}N}{p_{T} dp_{T} dy} \left(1 + \sum_{n=1}^{\infty} 2 \frac{v_{n}^{measured}}{v_{n}^{measured}} \cos[n(\phi - \Phi_{r})]\right)$$
 where $n = 1, 2, 3,$ event anisotropy parameter measured azimuthal angle of the particle

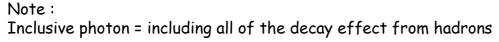

$$v_n^{\text{real}} = v_n^{\text{measured}}/\text{ (reaction plane resolution)}_n$$

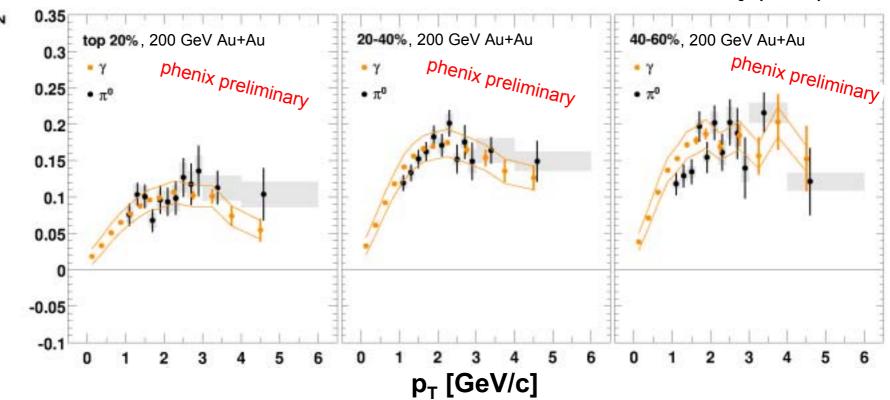

Note: the detail of reaction plane definition will be found in **nucl-ex/0305013**


- Define reaction plane by charged multiplicity on Beam-Beam Counters
- **Photons**
 - Obtained the second harmonic coefficient v_2 from $\langle \cos[2(\phi \Phi_r)] \rangle$
- - π^0 reconstruction and background subtract (combinatorial and the others)
 - For each p_{τ} , azimuthal angle, centrality
 - Combine both information
 - Counting number of π^0 as a function of ϕ - Φ_r and fit by the formula
- Electrons
 - Both methods are used



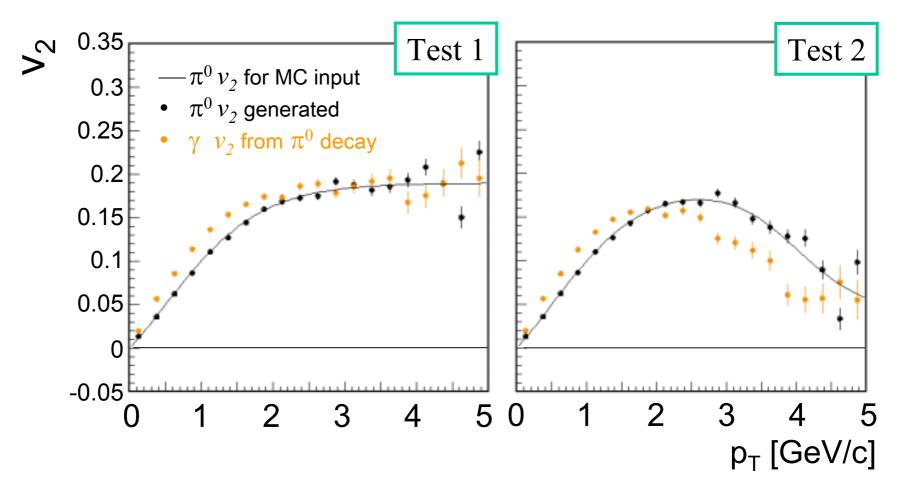
Reaction plane definition




金田雅司

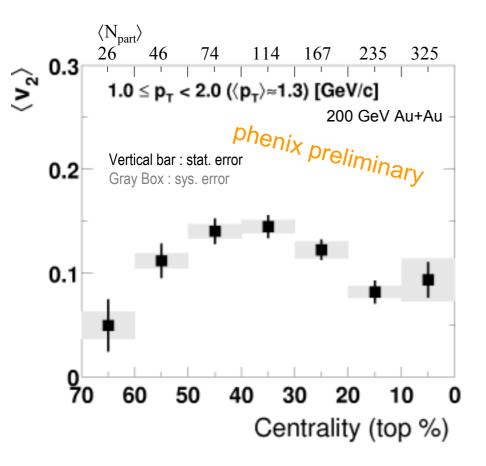
W & TC V2

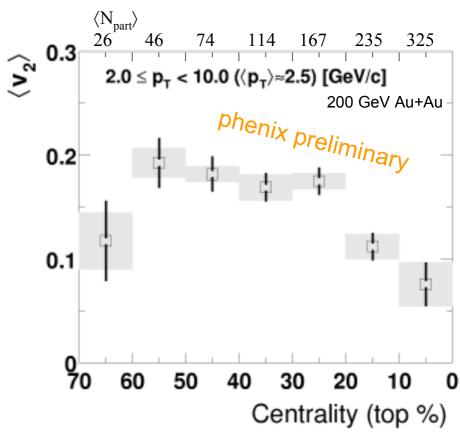
Inclusive photon v_2 and π^0 v_2 in 200 GeV Au+Au


vertical bar : stat. error curves, gray box : sys. error

- Inclusive photon v_2 shows similar tendency with π^0
 - Need more statistics to see photon v_2 after π^0 (and also η) decay effect subtraction

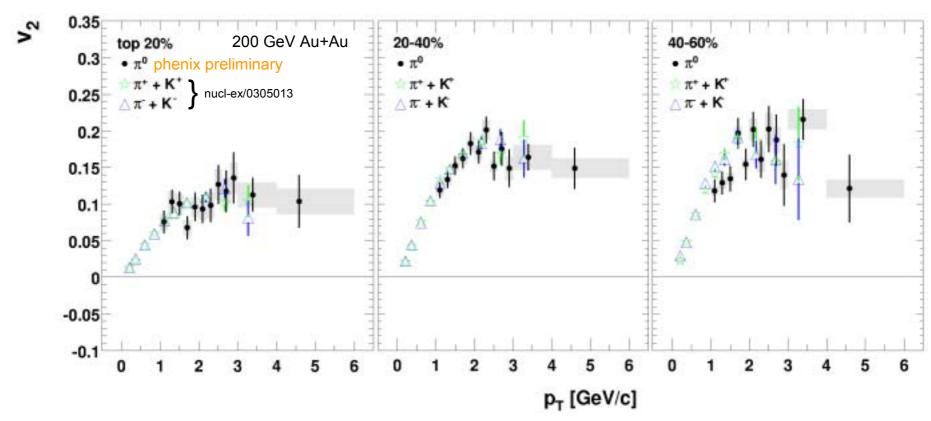
π^0 decay effect for photon v_2 (MC)




Tool is ready for the decay effect in photons

<v2> vs. centrality from 200 GeV Au+Au

一般を口がかりがかりがかりがかりがかりがかりがかりがかりがか

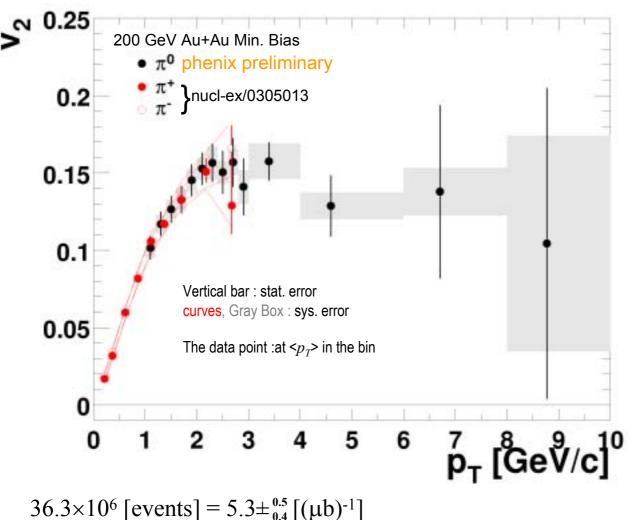


v_2 vs. p_T vs. centrality from 200 GeV Au+Au

· 我我也我我也我我也我我也我我也我我也我我也我我也我

Statistical error is shown by error bar Systematic error from π^0 count method and reaction plane determination is shown by horizontal bar The data point stays at p_7 in the bin and horizontal bar shows the bin range

The charged π and K v_2 are shown only with statistical errors

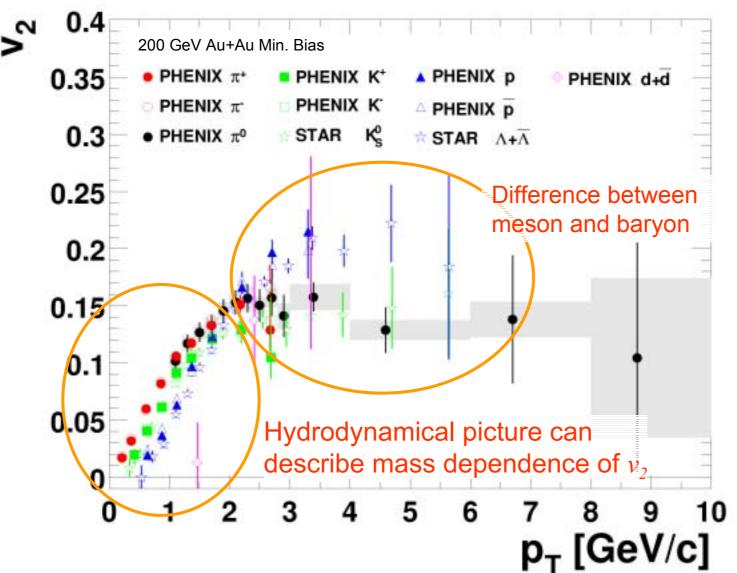

• Charged meson v_2 consistent with π^0 v_2 in p_T <4 GeV/c

v_2 vs. p_T (Min. Bias) from 200 GeV Au+Au

电影中国教育国家教园教育国家教园教育国家教园教育国家教园教育

• Identified particle v_2 up to p_T =10 GeV/c

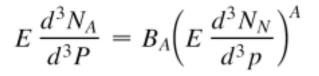
Consistent with charged pions


Also

- Similar p_T dependence with charged hadron v_2
- Low p_T : consistent with <u>hydrodynamical</u> calculation
- High p_T: interesting to compare to a jet quenching calculation/ <u>fragmentation-</u> <u>recombination model</u>

v_2 : Identified hadrons at mid-rapidity

PHENIX π , K, p in nucl-ex/0305013 and they are consistent with STAR data


PHENIX π^0 , d+ \overline{d} preliminary data

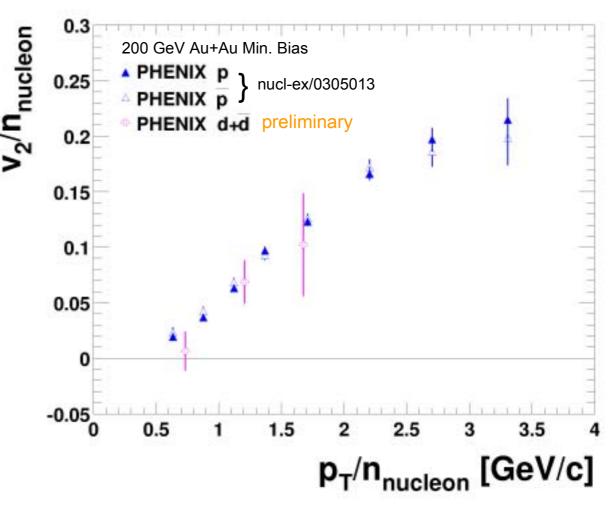
STAR K_S^0 , $\Lambda + \overline{\Lambda}$ in nucl-ex/0306007

Coalescence picture

やかりのかりのかかりかかりかかりかかりかかりかかりかか

It is established for the nuclei cross section

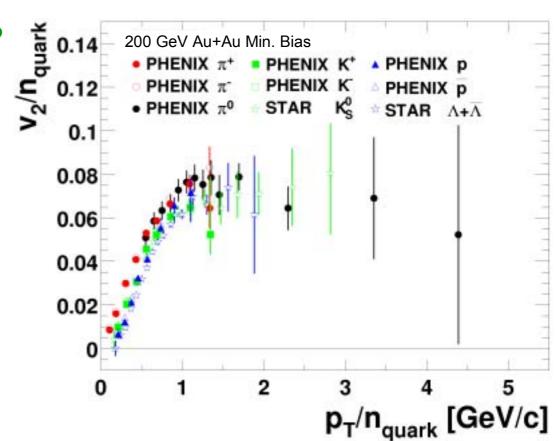
A: nuclear number


P : momentum

p = P/A

 B_A : coalescence parameter

$$v_{2,A}(P) = Av_{2,proton}(p)$$


Quark coalescence?

ਜ਼ਜ਼ਫ਼ਜ਼ਜ਼ਫ਼ਜ਼ਜ਼ਫ਼ਜ਼ਜ਼ਫ਼ਜ਼ਜ਼ਫ਼ਜ਼ਜ਼ਫ਼ਜ਼ਜ਼ਫ਼ਜ਼ਜ਼ਫ਼ਜ਼ਜ਼ਫ਼ਜ਼ਜ਼ਫ਼ਜ਼ਜ਼ਫ਼ਜ਼ਜ਼ਫ਼ਫ਼ਜ਼ਜ਼ਫ਼ਫ਼ਜ਼ਜ਼ਫ਼ਫ਼ਜ਼ਜ਼ਫ਼ਫ਼ਜ਼ਜ਼ਫ਼ਫ਼ਜ਼ਜ਼ਫ਼ਫ਼ਜ਼ਜ਼ਫ਼ਫ਼ਜ਼ਫ਼ਫ਼ਫ਼ਜ਼ਫ਼ਫ਼ਜ਼ਜ਼ਫ਼ਫ਼ਜ਼ਜ਼ਫ਼ਫ਼ਜ਼ਜ਼ਫ਼ਫ਼ਜ਼ਜ਼ਫ਼ਫ਼ਜ਼ਜ਼ਫ਼ਫ਼ਜ਼ਜ਼ਫ਼ਫ਼ਜ਼ਜ਼ਫ਼ਫ਼ਜ਼ਜ਼ਫ਼ਫ਼ਜ਼ਜ਼ਫ਼ਫ਼ਜ਼ਜ਼ਫ਼ਫ਼ਜ਼ਜ਼

- Phys. Rev. Lett. 91 (2003) 092301, D. Molnar and S.A. Voloshin
- qq→meson, qqq(qqq)→Baryon

$$v_{2,M}(p_{\perp}) \approx 2v_{2,q}\left(\frac{p_{\perp}}{2}\right), \qquad v_{2,B}(p_{\perp}) \approx 3v_{2,q}\left(\frac{p_{\perp}}{3}\right),$$

- What data looks like?
- Non-strange and strange mesons and baryons seem to be merged around p_T/n_{quark} $\approx 1-3 \text{ GeV}/c$
- With more statistics, we may discuss precisely

e + 1/2

Non-photonic $e^{\pm}v_2$

Have a look of the poster for detail discussion

-Shingo Sakai

 Azimuthal Anisotropy of electrons/positrons in 200 GeV Au+Au Collisions at RHIC-PHENIX

-Takashi Hachiya

•Single Electrons From Semi-leptonic Decays of Heavy Flavor in Au+Au Collisions at $\sqrt{s_{NN}} = 200$ GeV

<u>ಪ್ರಕ್ರಮಕ್ಕೆ ಪ್ರಕ್ರಿಯ ಕ್ರಿಕ್ಟಿಸ್ ಪ್ರಕ್ರಮಕ್ಕೆ ಪ್ರಕ್ರಿಸಿಕ್ಟರ್ಗೆ ಅಭಿಕ್ರಿಸಿಕ್ಕೆ ಕ್ರಿಕ್ಟಿಸಿಕ್ಟರ್ಗೆ ಕ್ರಿಕ್ಟರ್ಗೆ ಕ್ರಿಕ್ಟರರ್ಗೆ ಕ್ರಿಕ್ಟರ್ಗೆ ಕ್ರಿಕ್ಟರ್ಗೆ ಕ್ರಿಕ್ಟರ್ಗೆ ಕ್ರಿಕ್ಟರ್ಗೆ ಕ್ರಿಕ್ಟರ್ಟ್ ಕ್ರಿಕ್ಟರ್ಟ್ ಕ್ರಿಕ್ಟರ್ಟ್ ಕ್ರಿಕ್ಟರ್ಟ್ ಕ್ರಿಕ್ಟರ್ಟ್ ಕ್ರಿಕ್ಟರ್</u>

Summary

- First measurement of π^0 , γ , e^{\pm} v_2 at RHIC
- $\pi^0 v_2$
 - Minimum bias data (p_T =1-10 GeV/c)
 - v_2 at the highest p_T from the identified particle analysis
 - Non-zero π^0 v_2 up to $p_T \sim 8 \text{ GeV/}c$
 - Charged πv_2 consistent with $\pi^0 v_2$ in $p_T = 1-3 \text{ GeV/}c$
 - Quark coalescence picture seems to work
 - from combining various hadron v₂'s at RHIC
- \bullet γv_2
 - Centrality (top 20, 20-40, 40-60%) and p_T dependence (in p_T < 5 GeV/c) are consistent with π^0
 - With more statistics from run4, we hope to reject the decay effect
- $e^{\pm} v_2$
 - Minimum bias data ($p_T = 0.4-3.0 \text{ GeV/}c$)
 - Non-photonic e v_2 is consistent with both models:
 - charm flow and no-charm flow
 - We can discuss more precisely with more data.

New results of charged hadron v_n

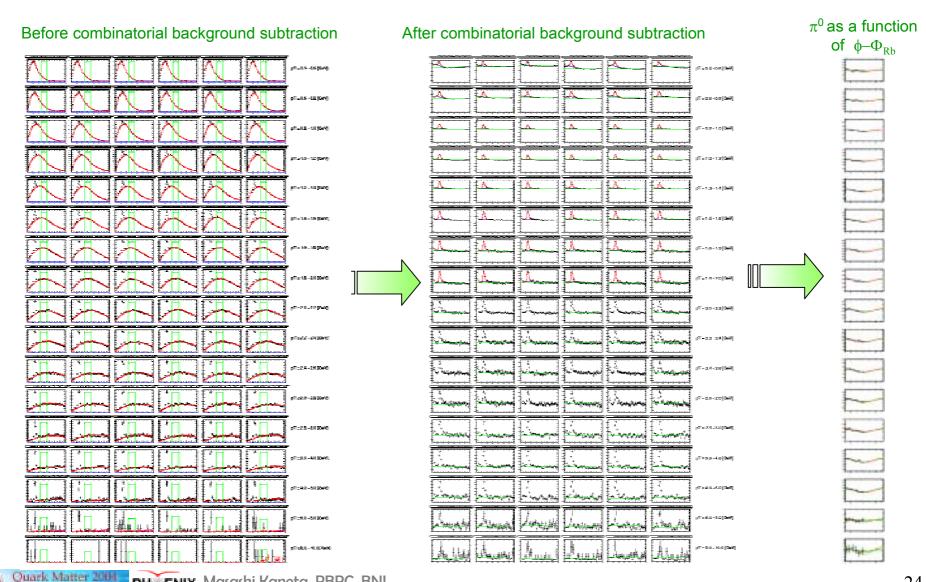
-Have a look of the poster for detail discussion

-Hiroshi Masui

•Measurement of directed flow in $\sqrt{s_{NN}} = 200$ GeV Au+Au, d+Au, p+p collisions at RHIC-PHENIX

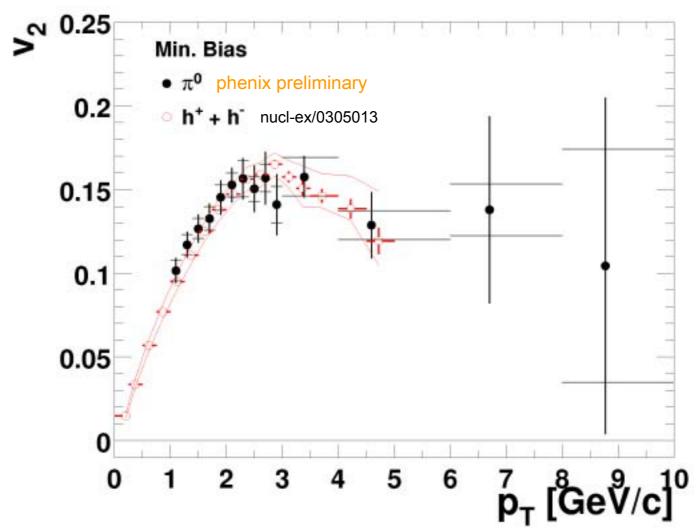
Backup

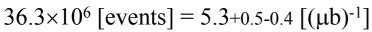
Example plots from the π^0 v_2 analysis procedures


PH ENIX Masashi Kaneta, RBRC, BNL

Quark Matter 2004

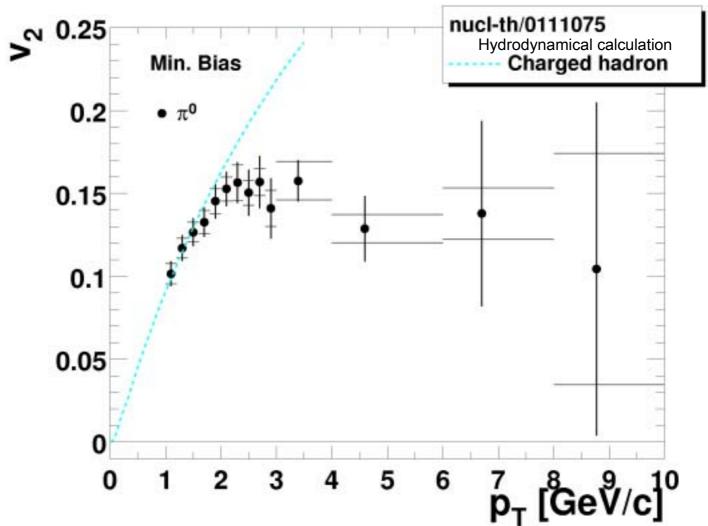
Invariant mass of γγ from same event and mixed event (classed by reaction plane, centrality, vertex position) ${
m dN/dm}_{\widetilde{M}}$ 200GeV Au+Au After the subtraction, there is 2nd component of B.G. in p_T <2GeV/c region normalization range for combinatorial B.G. subtraction -00 shape assumed as 200 linear+asym. Gauss 0.2 0.4 $m_{\gamma\gamma} [GeV/c^2]$ 0.2 0.6 0.4 $\mathrm{dN}_{\pi^0}/(\phi - \Phi_{
m R})$ $m_{\gamma\gamma} \, [GeV/c^2]$ count number of π^0 in a range after 2nd B.G. subtraction (not used the fit function) Fit function: (average of π^0 count) × (1 + 2 v_2 cos[2(ϕ - Φ_R)]) 2.0 1.0 3.0 Green lines : deviation by error of v_2 $\phi - \Phi_r$ [rad]


Tooooooooooo many histograms checked

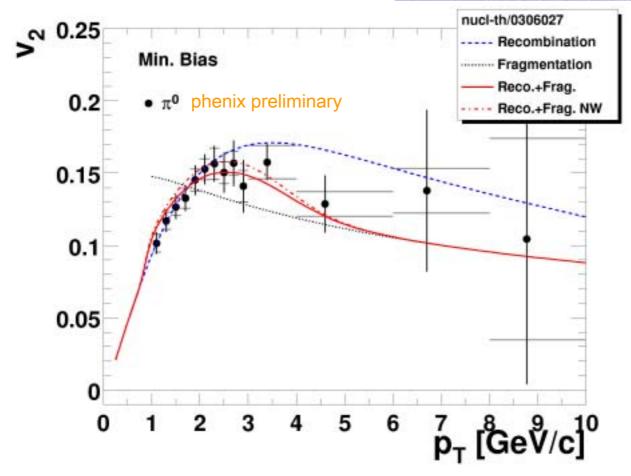

Example of invariant mass distributions for each p_T , ϕ - Φ_R in a centrality bin

金田

v_2 vs. p_T (Minimum Bias) from 200GeV Au+Au

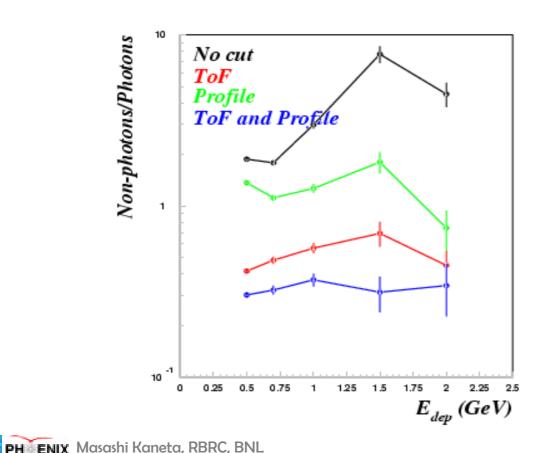


Comparison with a model

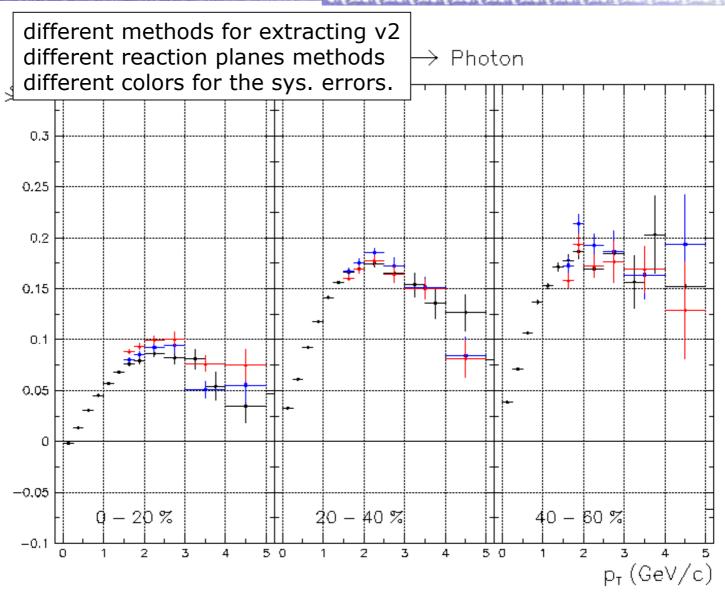

<u>ಇಕ್ಕೊಬಕ್ಕಬಕ್ಕಬಕ್ಕಬಕ್ಕಬರುಕ್ತಿಬರುಕ್ತಿಸಿದರುಕ್ಕೆ ಬರುಕ್ಷಿಸಿದರುಕ್ಕೆ ಸಿದ್ದರ್ಭಿಸಿದರುಕ್ಕೆ ಸಿದ್ದರರ್ಥಿಸಿದರುಕ್ಕೆ ಸಿದ್ದರರ್ಭಿಸಿದರುಕ್ಕೆ ಸಿದ್ದರರ್ಭಿಸಿದರರೆಗೆ ಸಿದ್ದರ್ಭಿಸಿದರುಕ್ಕೆ ಸಿದ್ದರ್ಭಿಸಿದರುಕ್ಕೆ ಸಿದ್ದರ್ಭಿಸಿದರುಕ್ಕೆ ಸಿದ್ದರ್ಭಿಸಿದರುಕ್ಕೆ ಸಿದ್ದರ್ಭಿಸಿದರುಕ್ಕೆ ಸಿದ್ದರರ್ಭಿಸಿದರರೆಗೆ ಸಿದ್ದರೆಗೆ ಸಿದ್ದರ್ಭಿಸಿದರುಕ್ಕೆ ಸಿದ್ದರೆಗೆ ಸಿದ್ದರೆಗೆ ಸಿದ್ದರೆಗೆ ಸಿದ್ದರೆಗೆ ಸಿದ್ದರೆಗೆ ಸಿದ್ದರೆಗ</u>

Hydrodynamical calculation agreed in p_T ~<2 GeV/c After that, it is deviated

Comparison with a model


Special thanks to C. Nonaka (one of authors) of nucl-th/0306027 for data of model calculation

Comparison with a model which is described in nucl-th/0306027. Here we don't want to discuss which model can describe the data. To conclude which model can describe the data, we need much more statistics in high p_{τ} region.


Photon purity with cuts

DNP99, October 1999

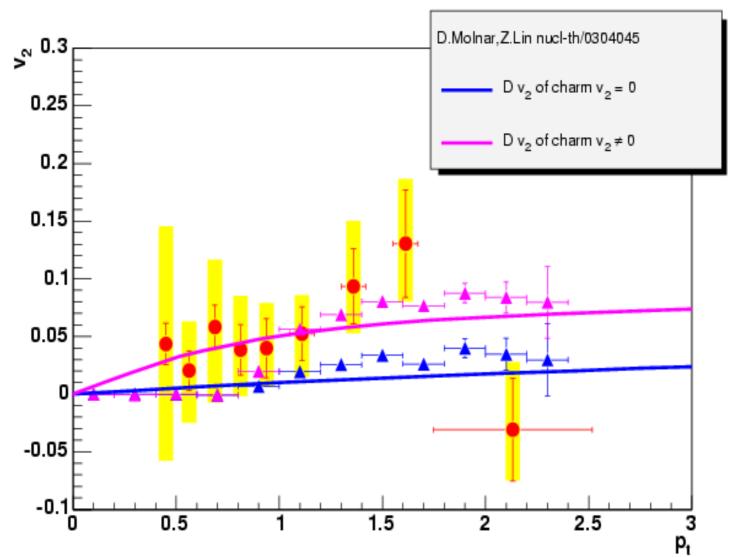
Central HIJING Events: ToF and Shower Profile cut performance

Systematic errors

Particle identifications

Requirement for photon

- Dead and noisy EMC towers are removed for the analysis
- PID cuts: χ^2 <3 for photon probability to shower shape
- |TOF| cut to reject hadron
- No charged track hit within cluster isolation window


• For π^0

- Photon ID, plus
- Asymmetry cut: $|E_1-E_2| / (E_1+E_2) < 0.8$
- Combinatorial background is estimated by event mixing
 - Classes categorized for event mixing
 - Centrality : every 10%
 - BBC Z Vertex : every 10cm in ±30cm
 - Reaction plane direction in PHENIX detector : 24 bins in $\pm \pi$

Electrons

Charmed electron v₂

